Time complexity of recursive algorithms. Master theorem

Lecture 06.05 by Marina Barsky

Running time

- To estimate asymptotic running time in nonrecursive algorithms we sum up the number of operations and ignore the constants
- For recursive algorithms (binary search, merge sort) we draw the recursion tree, count number of operations at each level, and multiply this number by the height of the tree

Running time as a recurrence relation

Binary search:

$$T(n) = T(n/2) + O(1) \rightarrow O(\log n)$$

Running time for the input of size n is equal the running time for the input of size n/2 plus a constant

Merge sort:

$$T(n) = 2 T(n/2) + O(n) \rightarrow O(n \log n)$$

Running time for the input of size n is equal twice the running time for the input of size n/2 plus O(n) work

Wouldn't it be nice if we could solve the running time directly from the recurrence relation?

Generic form of a recursive algorithm

Algorithm rec (input x of size n)

if n < some constant k:

Solve x directly without recursion

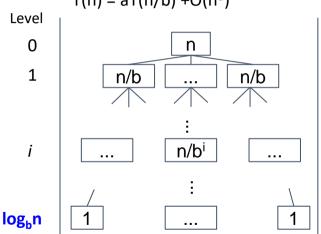
else:

Divide x into *a* subproblems, each having size *n/b*Call procedure *rec* recursively on each subproblem
Combine the results from the subproblems in time O(n^d)

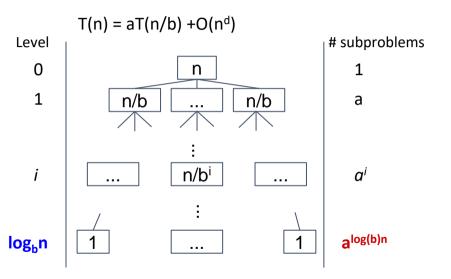
Running time: $T(n) = aT(n/b) + O(n^d)$ where $O(n^d)$ is time to both divide and combine the results

Generic tree: tree height

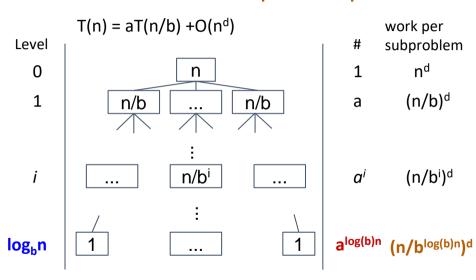
$$T(n) = aT(n/b) + O(n^d)$$



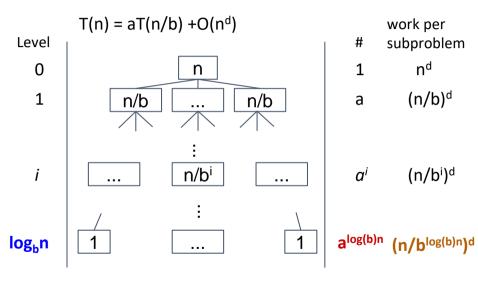
Generic tree: # of subproblems at each level



Generic tree: work per subproblem

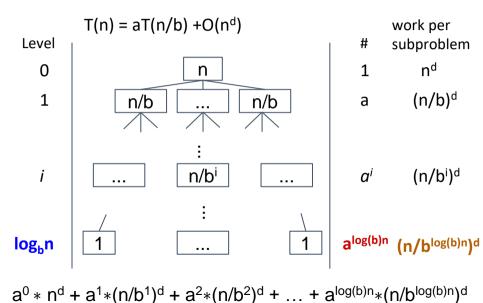


Generic tree: work per subproblem



Total work: 3

Generic tree: total work



Counting total work

```
a^{0} * n^{d} + a^{1} * (n/b^{1})^{d} + a^{2} * (n/b^{2})^{d} + ... + a^{\log(b)n} * (n/b^{\log(b)n})^{d} = n^{d} * [1 + a/b^{d} + (a/b^{d})^{2} + (a/b^{d})^{3} + ... + (a/b^{d})^{\log(b)n}]
```

Sum of geometric series

$$a^{0} * n^{d} + a^{1} * (n/b^{1})^{d} + a^{2} * (n/b^{2})^{d} + ... + a^{\log(b)n} * (n/b^{\log(b)n})^{d} = n^{d} * [1 + a/b^{d} + (a/b^{d})^{2} + (a/b^{d})^{3} + ... + (a/b^{d})^{\log(b)n}]$$

The sum of geometric series with k elements (k>=2): $1+1*r+1*r^2+...1*r^k=$

Sum of geometric series: cases

$$a^{0} * n^{d} + a^{1} * (n/b^{1})^{d} + a^{2} * (n/b^{2})^{d} + ... + a^{\log(b)n} * (n/b^{\log(b)n})^{d} = n^{d} * [1 + a/b^{d} + (a/b^{d})^{2} + (a/b^{d})^{3} + ... + (a/b^{d})^{\log(b)n}]$$

The sum of geometric series with k elements:

$$1+1*r + 1*r^2 + ... 1*r^k$$

$$\begin{array}{c|c} \hline 1-r^k \\ \hline \hline 1-r \end{array} \qquad \begin{array}{c} \text{Case 1: } r < 1. & \text{Sum becomes 2: O(1) (constant)} \\ \text{Case 2: } r = 1. & \text{Sum becomes k: O(k)} \\ \text{Case 3: } r > 1. & \text{Sum becomes O(} r^{k-1}) = O(r^k) \end{array}$$

It all depends on $r = a/b^d$

Total work:
$$n^d * [1 + a/b^d + (a/b^d)^2 + (a/b^d)^3 + ... + (a/b^d)^{\log(b)n}]$$

The sum of geometric series with k elements:

$$1+1*r + 1*r^2 + ... 1*r^k$$

Our r is a/b^d
Our k is log_bn

It all depends on $r = a/b^d$

Total work: $n^d * [1 + a/b^d + (a/b^d)^2 + (a/b^d)^3 + ... + (a/b^d)^{\log(b)n}]$

The sum of geometric series with k elements:

$$1+1*r + 1*r^2 + ... 1*r^k$$

r < 1.	Sum becomes 2: O(1) (constant)
a/b ^d < 1	Complexity becomes $O(n^d *2) = O(n^d)$
r=1.	Sum becomes k: O(k)
a/b ^d = 1	Complexity becomes O(nd *log(b)n)
r>1.	Sum becomes O(r ^k)
a/b ^d > 1	Complexity becomes $O(n^d *(a/b^d)^{\log(b)n})$
	a/b ^d < 1 r=1. a/b ^d = 1 r>1.

We have shown that:

Total work of a generic recursive algorithm

$$\begin{split} T(n) &= \mathbf{a} T(n/\mathbf{b}) + O(n^d) = \\ n^d &* \left[1 + a/b^d + (a/b^d)^2 + (a/b^d)^3 + ... + (a/b^d)^{\log(b)n} \right] \end{split}$$

Case 1: $a/b^d < 1$. $O(n^d)$ Case 2: $a/b^d = 1$. $O(n^d \log n)$

Case 3: $a/b^d > 1$. $O(n^d *(a/b^d)^{log(b)d})$

We have shown that:

Total work of a generic recursive algorithm

$$\begin{split} T(n) &= \mathbf{a} T(n/\mathbf{b}) + O(n^d) = \\ n^d &* \left[1 + a/b^d + (a/b^d)^2 + (a/b^d)^3 + ... + (a/b^d)^{\log(b)n} \right] \end{split}$$

Case 1: $a/b^d < 1$. $O(n^d)$ Case 2: $a/b^d = 1$. $O(n^d \log n)$

Case 3: $a/b^d > 1$. $O(n^d *(a/b^d)^{log(b)d})$

Simplifying case notation

Total work of a generic recursive algorithm

$$T(n) = aT(n/b) + O(n^d)$$

Case 1: $a/b^d < 1$. $O(n^d)$

Case 2: $a/b^d = 1$. O($n^d \log n$)

Case 3: $a/b^d > 1$. $O(n^d *(a/b^d)^{log(b)d})$

$$a/b^d < 1 \qquad \Leftrightarrow \qquad d > log_b a$$

 $a/b^d = 1 \qquad \Leftrightarrow \qquad d = log_b a$

$$a/b^d > 1 \Leftrightarrow d < log_b a$$

Simplifying nd *(a/bd)log(b)d

```
n^{d}*(a/b^{d})^{\log(b)d}=n^{d}*a^{\log(b)n}/b^{d\log(b)n}
```

```
But: b^{d \log(b)n} = n^d easy to see if you take \log_b of both sides: \log_b(b^{d \log(b)n}) = d \log_b n \log_b(n^d) = d \log_b n n^d * (a/b^d)^{\log(b)d} = n^d * a^{\log(b)n}/b^{d \log(b)n} = n^d * a^{\log(b)n}/n^d = a^{\log(b)n}
```

Simplifying alog(b)n

```
n^d *(a/b^d)^{\log(b)d} = a^{\log(b)n}
```

```
\begin{split} a^{\log(b)n} &= n^{\log(b)\,a} \\ \text{easy to see if you take log}_a \text{ of both sides:} \\ \log_a(a^{\log(b)n}) &= \log_b n \\ \log_a(n^{\log(b)\,a}) &= \log_b a * \log_a n = \log_b n \end{split}
```

This is called **Master theorem**

$$T(n) = aT(n/b) + O(n^d)$$

- 1. if $d > \log_h a$ then $O(n^d)$
- 2. if $d = \log_b a$ then $O(n^d * \log n)$
- 3. if $d < log_b a$ then $O(n^{log(b)a})$

Pre-conditions:

b > 1 (the subproblem size decreases)

a > 0 (the problem is reduced to a smaller sub problem at least once. At least one recursion level)

d>=0 (the amount of work is polynomial in n)

Example: binary search

$$T(n) = T(n/2) + 1$$

 $T(n) = 1*T(n/2) + n^{\circ}$
 $a = 1$
 $b = 2$
 $d = 0$
 $d = \log_b a$
 $O(n^{\circ} * \log n) = O(\log n)$

Example: merge sort

 $1 = \log_{2} 2$

 $O(n^1 * log n) = O(n log n)$

$$T(n) = 2T(n/2) + O(n^{1})$$

$$T(n) = aT(n/b) + O(n^{d})$$
if $d > log_b a$ then $O(n^{d})$
if $d = log_b a$ then $O(n^{d*} log n)$
if $d < log_b a$ then $O(n^{log(b)a})$

$$d = 1$$

Example: closest pair with O(n²) combine

$$T(n) = 2T(n/2) + O(n^2)$$

$$T(n) = aT(n/b) + O(n^d)$$

$$\Rightarrow if d > log_b a then O(n^d)$$

$$if d = log_b a then O(n^d * log n)$$

$$if d < log_b a then O(n^{log(b)a})$$

$$d = 2$$

$$2 > log_2 2$$

 $O(n^2)$

Example: polynomial multiplication

$$T(n) = 4T(n/2) + O(n^{1})$$

$$a = 4$$

$$b = 2$$

$$d = 1$$

$$T(n)$$
if d
if d
if d
if d
if d

 $1 < \log_2 4$

 $O(n^{\log(2)4}) = O(n^2)$

$$T(n) = aT(n/b) + O(n^d)$$
if $d > log_b a$ then $O(n^d)$
if $d = log_b a$ then $O(n^{d * log n})$

$$\Rightarrow if d < log_b a$$
 then $O(n^{log(b)a})$

Example: **fast** polynomial multiplication

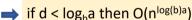
$$T(n) = 3T(n/2) + O(n^{1})$$

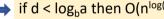
 $a = 3$
 $b = 2$
 $d = 1$

$$1 < \log_2 3$$
 $O(n^{\log(2)3})$

$$T(n) = aT(n/b) + O(n^d)$$

if $d > \log_{h} a$ then $O(n^d)$ if $d = \log_{h} a$ then $O(n^{d} * \log n)$





Intuitive approach

Compa	are the total amount of work at the first two levels:
	If total work is the same - this is geometric series with r=1. The complexity is: work on each level * number of levels.
	If total work at the first level > total work at the second level - this is convergent geometric series with r<1. Running time will be dominated by the work at the first level.
	If total work at the first level < total work at the second level - this is sum of geometric series with r>1. Running time will be dominated by the work at the last level: multiply total number of subproblems at the last level by work done for each subproblem

Intuitive example 1:

$$T(n) = T(n/2) + n^2$$

total work on the first level: n^2 total work on the second level: $(n/2)^2 = n^2/4 < n^2$

This is converging geometric series with r<1 The most important term is at the first level: $O(n^2)$ Complexity: $O(n^2)$

Intuitive example 2:

$$T(n) = 3T(n/3) + n$$

total work on the first level: n total work on the second level: 3*(n/3) = n

This is geometric series with r=1
All terms are important:
work per level* total levels = n * log₃n
Complexity: O(n log n)

Intuitive example 3: large-integer multiplication

$$T(n) = 4T(n/2) + n$$

total work on the first level: n total work on the second level: 4*(n/2) = 2n

This is diverging geometric series with r>1
The most important term is at the last level: $O(n^{\log(b) a})$ Complexity: $O(n^{\log(2) 4}) = O(n^2)$

Intuitive example 3': fast large-integer multiplication

$$T(n) = 3T(n/2) + n$$

total work on the first level: n total work on the second level: 3/2*n

This is diverging geometric series with r>1
The most important term is at the last level: $O(n^{\log(b) a})$ Complexity: $O(n^{\log(2) 3}) = O(n^{1.585})$

Intuitive example 4: matrix multiplication

$$T(n) = 8T(n/2) + n^2$$

total work on the first level: n^2 total work on the second level: $8*(n/2)^2 = 2n^2$

This is expanding geometric series with r>1
The most important term is at the last level: $O(n^{\log(b) a})$ Complexity: $O(n^{\log(2) 8}) = O(n^3)$

Intuitive example 4': fast matrix multiplication

$$T(n) = 7T(n/2) + n^2$$

total work on the first level: n^2 total work on the second level: $7*(n/2)^2 = 7/4 n^2$

This is expanding geometric series with r>1 The most important term is at the last level: $O(n^{\log(b) a})$ Complexity: $O(n^{\log(2) 7}) = O(n^{\log 7}) = O(n^{2.8})$

Applicability of Master theorem

$$T(n) = aT(n/b) + O(n^d)$$

a > 0

b > 1

The work at each level is polynomial in n, d>=0

Can we solve the following recursion using Master method?

$$T(n) = 2T(n/2) + \log n$$

NO!

So how to solve this recurrence?

$$T(n) = 2T(n/2) + \log n$$

One idea: intuitively estimate the work at each level

The height of the recursion tree is still log n

The work at level 1 is $\log n$, the work at level 2 is 2 times $\log (n/2) = 2*\log(n/2) = \log n$

Same work at all levels: O(log n * log n)

Reading

Attached Chapter 11 of "Algorithm Design and Applications" by Goodrich and Tomassia